Part Number Hot Search : 
S0508 6012M RPH6NS NPT40 NPT40 SMM02 KRC122M TLE6244
Product Description
Full Text Search
 

To Download ATF-34143 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  low noise pseudomorphic hemt in a surface mount plastic package technical data ATF-34143 features ? lead-free option available ? low noise figure ? excellent uniformity in product specifications ? 800 micron gate width ? low cost surface mount small plastic package sot-343 (4 lead sc-70) ? tape-and-reel packaging option available specifications 1.9 ghz; 4 v, 60 ma (typ.) ? 0.5 db noise figure ? 17.5 db associated gain ? 20 dbm output power at 1 db gain compression ? 31.5 dbm output 3 rd order intercept applications ? tower mounted amplifier and low noise amplifier for gsm/tdma/cdma base stations ? lna for wireless lan, wll/ rll and mmds applications ? general purpose discrete phemt for other ultra low noise applications surface mount package sot-343 description agilents ATF-34143 is a high dynamic range, low noise phemt housed in a 4-lead sc-70 (sot-343) surface mount plastic package. based on its featured performance, ATF-34143 is ideal for the first stage of base station lna due to the excellent combination of low noise figure and high linearity [1] . the device is also suitable for applications in wireless lan, wll/rll, mmds, and other systems requiring super low noise figure with good intercept in the 450 mhz to 10 ghz frequency range. note: 1. from the same phemt fet family, the larger geometry atf-33143 may also be considered either for the higher linearity performance or easier circuit design for stability in the lower frequency bands (800-900 mhz). pin connections and package marking note: top view. package marking provides orientation and identification. 4p = device code x = date code character. a new character is assigned for each month, year. gate 4px source drain source attention: observe precautions for handling electrostatic sensitive devices. esd machine model (class a) esd human body model (class 1) refer to agilent application note a004r: electrostatic discharge damage and control.
2 ATF-34143 absolute maximum ratings [1] absolute symbol parameter units maximum v ds drain - source voltage [2] v 5.5 v gs gate - source voltage [2] v-5 v gd gate drain voltage [2] v-5 i d drain current [2] ma i dss [3] p diss total power dissipation [4] mw 725 p in max rf input power dbm 17 t ch channel temperature c 160 t stg storage temperature c -65 to 160 jc thermal resistance [5] c/w 165 notes: 1. operation of this device above any one of these parameters may cause permanent damage. 2. assumes dc quiescent conditions. 3. v gs = 0 volts. 4. source lead temperature is 25 c. derate 6 mw/ c for t l > 40 c. 5. thermal resistance measured using 150 c liquid crystal measurement method. 6. under large signal conditions, v gs may swing positive and the drain current may exceed i dss . these conditions are acceptable as long as the maximum p diss and p in max ratings are not exceeded. product consistency distribution charts [7] v ds (v) figure 1. typical/pulsed i-v curves [6] . (v gs = -0.2 v per step) i ds (ma) 02 4 68 250 200 150 100 50 0 +0.6 v 0 v ?.6 v oip3 (dbm) figure 2. oip3 @ 2 ghz, 4 v, 60 ma. lsl=29.0, nominal=31.8, usl=35.0 29 31 30 33 34 32 35 120 100 80 60 40 20 0 -3 std +3 std cpk = 1.37245 std = 0.66 9 wafers sample size = 450 nf (db) figure 3. nf @ 2 ghz, 4 v, 60 ma. lsl=0.1, nominal=0.47, usl=0.8 0 0.4 0.2 0.6 0.8 120 100 80 60 40 20 0 -3 std +3 std cpk = 2.69167 std = 0.04 9 wafers sample size = 450 gain (db) figure 4. gain @ 2 ghz, 4 v, 60 ma. lsl=16.0, nominal=17.5, usl=19.0 16 17 16.5 18 18.5 17.5 19 120 100 80 60 40 20 0 -3 std +3 std cpk = 2.99973 std = 0.15 9 wafers sample size = 450 notes: 7. distribution data sample size is 450 samples taken from 9 different wafers. future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 8. measurements made on production test board. this circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. circuit losses have been de-embedded from actual measurements.
3 ATF-34143 electrical specifications t a = 25 c, rf parameters measured in a test circuit for a typical device symbol parameters and test conditions units min. typ. [2] max. i dss [1] saturated drain current v ds = 1.5 v, v gs = 0 v ma 90 118 145 v p [1] pinchoff voltage v ds = 1.5 v, i ds = 10% of i dss v -0.65 - 0.5 -0.35 i d quiescent bias current v gs = 0.34 v, v ds = 4 v ma 60 g m [1] transconductance v ds = 1.5 v, g m = i dss /v p mmho 180 230 i gdo gate to drain leakage current v gd = 5 v a 500 i gss gate leakage current v gd = v gs = -4 v a 30 300 nf noise figure f = 2 ghz v ds = 4 v, i ds = 60 ma db 0.5 0.8 v ds = 4 v, i ds = 30 ma 0.5 f = 900 mhz v ds = 4 v, i ds = 60 ma db 0.4 g a associated gain f = 2 ghz v ds = 4 v, i ds = 60 ma db 16 17.5 19 v ds = 4 v, i ds = 30 ma 17 f = 900 mhz v ds = 4 v, i ds = 60 ma db 21.5 oip3 output 3 rd order f = 2 ghz v ds = 4 v, i ds = 60 ma dbm 29 31.5 intercept point [3] +5 dbm p out /tone v ds = 4 v, i ds = 30 ma 30 f = 900 mhz v ds = 4 v, i ds = 60 ma dbm 31 +5 dbm p out /tone p 1db 1 db compressed f = 2 ghz v ds = 4 v, i ds = 60 ma dbm 20 intercept point [3] v ds = 4 v, i ds = 30 ma 19 f = 900 mhz v ds = 4 v, i ds = 60 ma dbm 18.5 notes: 1. guaranteed at wafer probe level 2. typical value determined from a sample size of 450 parts from 9 wafers. 3. using production test board. figure 5. block diagram of 2 ghz production test board used for noise figure, associated gain, p1db, and oip3 measure- ments. this circuit represents a trade-off between an optimal noise match and associated impedance matching circuit losses. circuit losses have been de-embedded from actual measurements. input 50 ohm transmission line including gate bias t (0.5 db loss) input matching circuit _mag = 0.30 _ang = 56 (0.4 db loss) dut 50 ohm transmission line including drain bias t (0.5 db loss) output
4 ATF-34143 typical performance curves notes: 1. measurements made on a fixed toned production test board that was tuned for optimal gain match with reasonable noise figure a t 4 v, 60 ma bias. this circuit represents a trade-off between optimal noise match, maximum gain match, and a realizable match based o n production test board requirements. circuit losses have been de-embedded from actual measurements. 2. p 1db measurements are performed with passive biasing. quicescent drain current, i dsq , is set with zero rf drive applied. as p 1db is approached, the drain current may increase or decrease depending on frequency and dc bias point. at lower values of i dsq the device is running closer to class b as power output approaches p 1db . this results in higher pae (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. as an example, at a v ds = 4 v and i dsq = 10 ma, i d increases to 62 ma as a p 1db of +19 dbm is approached. i dsq (ma) figure 6. oip3 and p 1db vs. i ds and v ds tuned for nf @ 4 v, 60 ma at 2 ghz. [1,2] oip3, p 1db (dbm) 040 20 80 120 100 60 140 35 30 25 20 15 10 5 0 oip3 3 v 4 v p 1db i dsq (ma) figure 9. oip3 and p 1db vs. i ds and v ds tuned for nf @ 4 v, 60 ma at 900 mhz. [1,2] oip3, p 1db (dbm) 040 20 80 100 60 120 35 30 25 20 15 10 5 0 oip3 3 v 4 v p 1db current (ma) figure 8. noise figure vs. current (i d ) and voltage (v ds ) at 2 ghz. [1,2] noise figure (db) 040 20 80 100 60 120 1 0.8 0.6 0.4 0.2 0 3 v 4 v current (ma) figure 11. noise figure vs. current (i d ) and voltage (v ds ) at 900 mhz. [1,2] noise figure (db) 040 20 80 100 60 120 3 v 4 v 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 current (ma) figure 7. associated gain vs. current (i d ) and voltage (v d ) at 2 ghz. [1,2] associated gain (db) 040 20 80 100 60 120 3 v 4 v 20 15 10 5 0 current (ma) figure 10. associated gain vs. current (i d ) and voltage (v d ) at 900 mhz. [1,2] associated gain (db) 040 20 80 100 60 120 3 v 4 v 25 20 15 10 5 0 frequency (ghz) figure 12. fmin vs. frequency and current at 4 v. fmin (db) 0 4.0 2.0 6.0 60 ma 40 ma 20 ma 1.2 1.0 0.8 0.6 0.4 0.2 0 frequency (ghz) figure 13. associated gain vs. frequency and current at 4 v. g a (db) 0 2.0 1.0 4.0 5.0 3.0 6.0 25 20 15 10 5 60 ma 40 ma 20 ma
5 ATF-34143 typical performance curves, continued note: 1. p 1db measurements are performed with passive biasing. quicescent drain current, i dsq , is set with zero rf drive applied. as p 1db is approached, the drain current may increase or decrease depending on frequency and dc bias point. at lower values of i dsq the device is running closer to class b as power output approaches p 1db . this results in higher pae (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. as an example, at a v ds = 4 v and i dsq = 10 ma, i d increases to 62 ma as a p 1db of +19 dbm is approached. figure 19. p 1db vs. i ds active bias tuned for min nf @ 4v, 60 ma at 900 mhz. frequency (mhz) figure 15. p 1db , ip3 vs. frequency and temperature at v ds = 4 v, i ds = 60 ma. [1] p1db, oip3 (dbm) 0 2000 4000 6000 8000 33 31 29 27 25 23 21 19 17 85 c 25 c -40 c oip3 p 1db i dsq (ma) figure 16. nf, gain, op1db and oip3 vs. i ds at 4 v and 3.9 ghz tuned for noise figure . [1] gain (db), op1db, and oip3 (dbm) noise figure (db) 040 20 80 100 120 60 140 gain op1db oip3 nf 35 30 25 20 15 10 5 0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 i dsq (ma) figure 17. nf, gain, op1db and oip3 vs. i ds at 4 v and 5.8 ghz tuned for noise figure . [1] gain (db), op1db, and oip3 (dbm) noise figure (db) 040 20 80 100 120 60 gain op1db oip3 nf 30 27 24 21 18 15 12 9 6 3 0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 frequency (ghz) figure 14. fmin and g a vs. frequency and temperature at v ds = 4 v, i ds = 60 ma. g a (db) 0 2000 4000 6000 8000 25 20 15 10 nf (db) 1.5 1.0 0.5 0 85 c 25 c -40 c i ds (ma) figure 18. p 1db vs. i ds active bias tuned for nf @ 4v, 60 ma at 2 ghz. p 1db (dbm) 0 100 50 150 25 20 15 10 5 0 -5 3 v 4 v i ds (ma) p 1db (dbm) 0 100 50 150 25 20 15 10 5 0 -5 3 v 4 v
6 ATF-34143 power parameters tuned for power, v ds = 4 v, i dsq = 120 ma ATF-34143 power parameters tuned for power, v ds = 4 v, i dsq = 60 ma gamma gamma freq p 1db i d g 1db pae 1db p 3dbm i d pae 3db out_mag out_ang (ghz) (dbm) (ma) (db) (%) (dbm) (ma) (%) (mag) (degrees) 0.9 18.2 75 27.5 22 20.5 78 36 0.48 102 1.5 18.7 58 24.5 32 20.8 59 51 0.45 117 1.8 18.8 57 23.0 33 21.1 71 45 0.42 126 2 18.8 59 22.2 32 21.9 81 47 0.40 131 4 20.2 66 13.9 38 22.0 77 48 0.25 -162 6 21.2 79 9.9 37 23.5 102 46 0.18 -77 p in (dbm) figure 20. swept power tuned for power at 2 ghz, v ds = 4 v, i dsq = 120 ma. p out (dbm), g (db), pae (%) -30 -10 -20 10 020 80 50 40 30 20 10 0 -10 p out gain pae p in (dbm) figure 21. swept power tuned for power at 2 ghz, v ds = 4 v, i dsq = 60 ma. p out (dbm), g (db), pae (%) -30 -10 -20 10 020 80 60 40 20 0 -20 p out gain pae notes: 1. p 1db measurements are performed with passive biasing. quicescent drain current, i dsq , is set with zero rf drive applied. as p 1db is approached, the drain current may increase or decrease depending on frequency and dc bias point. at lower values of i dsq the device is running closer to class b as power output approaches p 1db . this results in higher pae (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. as an example, at a v ds = 4 v and i dsq = 10 ma, i d increases to 62 ma as a p 1db of +19 dbm is approached. 2. pae(%) = ((pout C pin) / pdc) x 100 3. gamma out is the reflection coefficient of the matching circuit presented to the output of the device. gamma gamma freq p 1db i d g 1db pae 1db p 3dbm i d pae 3db out_mag out_ang (ghz) (dbm) (ma) (db) (%) (dbm) (ma) (%) (mag) (degrees) 0.9 20.9 114 25.7 27 22.8 108 44 0.34 136 1.5 21.7 115 21.9 32 23.1 95 53 0.31 152 1.8 21.3 111 20.5 30 23.0 105 47 0.30 164 2 22.0 106 19.5 37 23.7 115 50 0.28 171 4 22.7 110 12.7 40 23.6 111 47 0.26 -135 6 23.3 115 9.2 41 24.2 121 44 0.24 -66
7 ATF-34143 typical noise parameters v ds = 3 v, i ds = 20 ma freq. f min opt r n/50 g a ghz db mag. ang. - db 0.5 0.10 0.90 13 0.16 21.8 0.9 0.11 0.85 27 0.14 18.3 1.0 0.11 0.84 31 0.13 17.8 1.5 0.14 0.77 48 0.11 16.4 1.8 0.17 0.74 57 0.10 16.0 2.0 0.19 0.71 66 0.09 15.6 2.5 0.23 0.65 83 0.07 14.8 3.0 0.29 0.59 102 0.06 14.0 4.0 0.42 0.51 138 0.03 12.6 5.0 0.54 0.45 174 0.03 11.4 6.0 0.67 0.42 -151 0.05 10.3 7.0 0.79 0.42 -118 0.10 9.4 8.0 0.92 0.45 -88 0.18 8.6 9.0 1.04 0.51 -63 0.30 8.0 10.0 1.16 0.61 -43 0.46 7.5 ATF-34143 typical scattering parameters, v ds = 3 v, i ds = 20 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.96 -37 20.07 10.079 153 -29.12 0.035 68 0.40 -35 24.59 0.8 0.91 -60 19.68 9.642 137 -26.02 0.050 56 0.34 -56 22.85 1.0 0.87 -76 18.96 8.867 126 -24.29 0.061 48 0.32 -71 21.62 1.5 0.81 -104 17.43 7.443 106 -22.27 0.077 34 0.29 -98 19.85 1.8 0.78 -115 16.70 6.843 98 -21.62 0.083 28 0.28 -110 19.16 2.0 0.75 -126 16.00 6.306 90 -21.11 0.088 23 0.26 -120 18.55 2.5 0.72 -145 14.71 5.438 75 -20.45 0.095 15 0.25 -140 17.58 3.0 0.69 -162 13.56 4.762 62 -19.83 0.102 7 0.23 -156 16.69 4.0 0.65 166 11.61 3.806 38 -19.09 0.111 -8 0.22 174 15.35 5.0 0.64 139 10.01 3.165 16 -18.49 0.119 -21 0.22 146 14.25 6.0 0.65 114 8.65 2.706 -5 -18.06 0.125 -35 0.23 118 13.35 7.0 0.66 89 7.33 2.326 -27 -17.79 0.129 -49 0.25 91 10.91 8.0 0.69 67 6.09 2.017 -47 -17.52 0.133 -62 0.29 67 9.71 9.0 0.72 48 4.90 1.758 -66 -17.39 0.135 -75 0.34 46 8.79 10.0 0.75 30 3.91 1.568 -86 -17.08 0.140 -88 0.39 28 8.31 11.0 0.77 10 2.88 1.393 -105 -16.95 0.142 -103 0.43 10 7.56 12.0 0.80 -10 1.74 1.222 -126 -16.95 0.142 -118 0.47 -10 6.83 13.0 0.83 -29 0.38 1.045 -145 -17.39 0.135 -133 0.53 -28 6.18 14.0 0.85 -44 -0.96 0.895 -161 -17.86 0.128 -145 0.58 -42 5.62 15.0 0.86 -55 -2.06 0.789 -177 -18.13 0.124 -156 0.62 -57 5.04 16.0 0.85 -72 -3.09 0.701 166 -18.13 0.124 -168 0.65 -70 3.86 17.0 0.85 -88 -4.22 0.615 149 -18.06 0.125 177 0.68 -85 3.00 18.0 0.88 -101 -5.71 0.518 133 -18.94 0.113 165 0.71 -103 2.52 frequency (ghz) figure 23. msg/mag and |s 21 | 2 vs. frequency at 3 v, 20 ma. msg/mag and s 21 (db) 04 2 8 14 16 10 12 618 25 20 15 10 5 0 -5 -10 msg mag s 21 notes: 1. fmin values at 2 ghz and higher are based on measurements while the fmins below 2 ghz have been extrapolated. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements a true fmin is calculated. refer to the noise parameter application section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. the input reference plane is at the end of the gate lead. the output reference plane is at the end of the drain lead. the parameters include the effect of four pla ted through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side o f the carrier. two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each si de of that point.
8 ATF-34143 typical noise parameters v ds = 3 v, i ds = 40 ma freq. f min opt r n/50 g a ghz db mag. ang. - db 0.5 0.10 0.87 13 0.16 23.0 0.9 0.13 0.82 28 0.13 19.6 1.0 0.14 0.80 32 0.13 19.2 1.5 0.17 0.73 50 0.1 17.7 1.8 0.21 0.70 61 0.09 17.1 2.0 0.23 0.66 68 0.08 16.7 2.5 0.29 0.60 87 0.06 15.8 3.0 0.35 0.54 106 0.05 14.9 4.0 0.47 0.46 144 0.03 13.4 5.0 0.6 0.41 -178 0.03 12.1 6.0 0.72 0.39 -142 0.06 10.9 7.0 0.85 0.41 -109 0.12 9.9 8.0 0.97 0.45 -80 0.21 9.1 9.0 1.09 0.52 -56 0.34 8.4 10.0 1.22 0.61 -39 0.50 8.0 ATF-34143 typical scattering parameters, v ds = 3 v, i ds = 40 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.96 -40 21.32 11.645 151 -30.46 0.030 68 0.29 -43 25.89 0.8 0.89 -64 20.79 10.950 135 -27.33 0.043 56 0.24 -70 24.06 1.0 0.85 -81 19.96 9.956 124 -25.68 0.052 49 0.24 -88 22.82 1.5 0.79 -109 18.29 8.209 104 -23.61 0.066 36 0.23 -118 20.95 1.8 0.76 -121 17.50 7.495 96 -22.97 0.071 32 0.23 -130 20.24 2.0 0.74 -131 16.75 6.876 88 -22.38 0.076 27 0.22 -141 19.57 2.5 0.70 -150 15.39 5.880 74 -21.51 0.084 19 0.22 -160 18.45 3.0 0.67 -167 14.19 5.120 61 -20.92 0.090 12 0.22 -176 17.55 4.0 0.64 162 12.18 4.063 38 -19.83 0.102 -1 0.21 157 16.00 5.0 0.64 135 10.54 3.365 16 -19.02 0.112 -14 0.22 131 14.78 6.0 0.65 111 9.15 2.867 -5 -18.34 0.121 -28 0.24 105 12.91 7.0 0.66 87 7.80 2.454 -26 -17.86 0.128 -42 0.28 81 11.03 8.0 0.69 65 6.55 2.125 -46 -17.46 0.134 -55 0.32 60 9.93 9.0 0.73 46 5.33 1.848 -65 -17.20 0.138 -69 0.37 40 9.07 10.0 0.76 28 4.33 1.647 -84 -16.83 0.144 -84 0.41 23 8.59 11.0 0.78 9 3.30 1.462 -104 -16.65 0.147 -99 0.45 5 7.84 12.0 0.80 -11 2.15 1.281 -123 -16.65 0.147 -114 0.50 -14 7.15 13.0 0.83 -30 0.79 1.095 -142 -17.08 0.140 -130 0.55 -31 6.50 14.0 0.86 -44 -0.53 0.941 -158 -17.52 0.133 -142 0.60 -45 5.96 15.0 0.87 -56 -1.61 0.831 -174 -17.72 0.130 -154 0.64 -59 5.39 16.0 0.86 -72 -2.60 0.741 169 -17.72 0.130 -166 0.66 -73 4.21 17.0 0.86 -88 -3.72 0.652 153 -17.79 0.129 179 0.69 -88 3.43 18.0 0.88 -102 -5.15 0.553 137 -18.64 0.117 166 0.72 -105 2.95 frequency (ghz) figure 24. msg/mag and |s 21 | 2 vs. frequency at 3 v, 40 ma. msg/mag and s 21 (db) 04 2 8 14 16 10 12 618 30 25 20 15 10 5 0 -5 -10 msg mag s 21 notes: 1. fmin values at 2 ghz and higher are based on measurements while the fmins below 2 ghz have been extrapolated. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements a true fmin is calculated. refer to the noise parameter application section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. the input reference plane is at the end of the gate lead. the output reference plane is at the end of the drain lead. the parameters include the effect of four pla ted through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side o f the carrier. two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each si de of that point.
9 ATF-34143 typical noise parameters v ds = 4 v, i ds = 40 ma freq. f min opt r n/50 g a ghz db mag. ang. - db 0.5 0.10 0.87 13 0.16 22.8 0.9 0.13 0.82 27 0.14 19.4 1.0 0.14 0.80 31 0.13 18.9 1.5 0.17 0.73 49 0.11 17.4 1.8 0.20 0.70 60 0.10 16.9 2.0 0.22 0.66 67 0.09 16.4 2.5 0.28 0.60 85 0.07 15.6 3.0 0.34 0.54 104 0.05 14.8 4.0 0.45 0.45 142 0.03 13.3 5.0 0.57 0.40 180 0.03 12.0 6.0 0.69 0.38 -144 0.05 10.9 7.0 0.81 0.39 -111 0.11 9.9 8.0 0.94 0.43 -82 0.20 9.1 9.0 1.06 0.51 -57 0.32 8.5 10.0 1.19 0.62 -40 0.47 8.1 ATF-34143 typical scattering parameters, v ds = 4 v, i ds = 40 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.95 -40 21.56 11.973 151 0.03 0.030 68 0.33 -39 26.01 0.8 0.89 -65 21.02 11.252 135 0.04 0.042 56 0.27 -63 24.28 1.0 0.85 -82 20.19 10.217 123 0.05 0.051 48 0.26 -80 23.02 1.5 0.78 -109 18.49 8.405 104 0.06 0.064 36 0.24 -109 21.18 1.8 0.73 -131 16.93 7.024 87 0.07 0.074 27 0.22 -131 20.46 2.0 0.70 -150 15.57 6.002 73 0.08 0.081 19 0.21 -150 19.77 2.5 0.67 -167 14.36 5.223 61 0.09 0.087 12 0.20 -167 18.70 3.0 0.64 162 12.34 4.141 37 0.10 0.098 -1 0.19 165 17.75 4.0 0.63 135 10.70 3.428 16 0.11 0.108 -13 0.20 138 16.26 5.0 0.64 111 9.32 2.923 -6 0.12 0.117 -27 0.21 111 15.02 6.0 0.66 87 7.98 2.506 -26 0.12 0.124 -41 0.24 86 12.93 7.0 0.69 65 6.74 2.173 -46 0.13 0.130 -54 0.29 63 11.14 8.0 0.72 47 5.55 1.894 -65 0.13 0.134 -68 0.34 42 10.09 9.0 0.76 28 4.55 1.689 -85 0.14 0.141 -82 0.38 26 9.24 10.0 0.78 9 3.53 1.501 -104 0.15 0.145 -97 0.42 8 8.79 11.0 0.80 -11 2.39 1.317 -124 0.15 0.145 -113 0.47 -11 8.09 12.0 0.84 -29 1.02 1.125 -143 0.14 0.140 -128 0.53 -29 7.35 13.0 0.86 -44 -0.30 0.966 -160 0.13 0.133 -141 0.58 -43 6.76 14.0 0.87 -56 -1.38 0.853 -176 0.13 0.130 -152 0.62 -58 6.19 15.0 0.86 -72 -2.40 0.759 167 0.13 0.131 -165 0.65 -71 5.62 16.0 0.86 -88 -3.53 0.666 151 0.13 0.130 -180 0.68 -86 4.43 17.0 0.89 -102 -4.99 0.563 134 0.12 0.119 168 0.71 -103 3.60 18.0 0.89 -101.85 -4.99 0.563 134 0.12 0.119 168 0.71 -103 3.15 frequency (ghz) figure 25. msg/mag and |s 21 | 2 vs. frequency at 4 v, 40 ma. msg/mag and s 21 (db) 04 2 8 14 16 10 12 618 30 25 20 15 10 5 0 -5 msg mag s 21 notes: 1. fmin values at 2 ghz and higher are based on measurements while the fmins below 2 ghz have been extrapolated. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements a true fmin is calculated. refer to the noise parameter application section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. the input reference plane is at the end of the gate lead. the output reference plane is at the end of the drain lead. the parameters include the effect of four pla ted through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side o f the carrier. two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each si de of that point.
10 ATF-34143 typical noise parameters v ds = 4 v, i ds = 60 ma freq. f min opt r n/50 g a ghz db mag. ang. - db 0.5 0.11 0.84 15 0.14 24.5 0.9 0.14 0.78 30 0.12 20.7 1.0 0.15 0.77 34 0.12 20.2 1.5 0.20 0.69 53 0.10 18.5 1.8 0.23 0.66 62 0.10 17.7 2.0 0.26 0.62 72 0.09 17.2 2.5 0.33 0.55 91 0.07 16.3 3.0 0.39 0.50 111 0.05 15.4 4.0 0.53 0.43 149 0.03 13.7 5.0 0.67 0.39 -173 0.04 12.3 6.0 0.81 0.39 -137 0.07 11.1 7.0 0.96 0.42 -104 0.14 10.0 8.0 1.10 0.47 -76 0.26 9.2 9.0 1.25 0.54 -53 0.41 8.6 10.0 1.39 0.62 -37 0.60 8.2 ATF-34143 typical scattering parameters, v ds = 4 v, i ds = 60 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.95 -41 21.91 12.454 150 -31.06 0.028 68 0.29 -41 26.48 0.8 0.89 -65 21.33 11.654 134 -28.18 0.039 57 0.24 -67 24.75 1.0 0.85 -83 20.46 10.549 123 -26.56 0.047 49 0.23 -84 23.51 1.5 0.78 -111 18.74 8.646 103 -24.44 0.060 38 0.21 -114 21.59 1.8 0.75 -122 17.92 7.873 95 -23.74 0.065 33 0.21 -125 20.83 2.0 0.73 -133 17.16 7.207 87 -23.22 0.069 29 0.20 -136 20.19 2.5 0.69 -151 15.78 6.149 73 -22.38 0.076 22 0.19 -155 19.08 3.0 0.67 -168 14.56 5.345 60 -21.62 0.083 15 0.19 -171 18.09 4.0 0.64 161 12.53 4.232 37 -20.54 0.094 3 0.18 162 16.53 5.0 0.63 134 10.88 3.501 16 -19.58 0.105 -10 0.19 135 15.23 6.0 0.64 111 9.49 2.983 -5 -18.79 0.115 -24 0.21 109 12.89 7.0 0.66 86 8.15 2.557 -26 -18.27 0.122 -38 0.24 84 11.22 8.0 0.69 65 6.92 2.217 -46 -17.79 0.129 -51 0.28 62 10.21 9.0 0.73 46 5.72 1.932 -65 -17.46 0.134 -65 0.33 42 9.36 10.0 0.76 28 4.73 1.723 -84 -16.95 0.142 -79 0.38 25 8.94 11.0 0.78 9 3.70 1.531 -104 -16.71 0.146 -94 0.42 7 8.23 12.0 0.81 -11 2.57 1.344 -124 -16.71 0.146 -111 0.47 -12 7.56 13.0 0.84 -30 1.20 1.148 -143 -17.02 0.141 -126 0.52 -29 6.94 14.0 0.86 -44 -0.12 0.986 -159 -17.46 0.134 -139 0.58 -43 6.37 15.0 0.87 -56 -1.21 0.870 -175 -17.59 0.132 -150 0.62 -58 5.78 16.0 0.86 -72 -2.21 0.775 168 -17.59 0.132 -163 0.65 -71 4.60 17.0 0.86 -88 -3.35 0.680 151 -17.65 0.131 -178 0.68 -86 3.79 18.0 0.89 -101.99 -4.81 0.575 135 -18.42 0.120 169 0.71 -104 3.33 frequency (ghz) figure 26. msg/mag and |s 21 | 2 vs. frequency at 4 v, 60 ma. msg/mag and s 21 (db) 04 2 8 14 16 10 12 618 30 25 20 15 10 5 0 -5 -10 msg mag s 21 notes: 1. fmin values at 2 ghz and higher are based on measurements while the fmins below 2 ghz have been extrapolated. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements a true fmin is calculated. refer to the noise parameter application section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. the input reference plane is at the end of the gate lead. the output reference plane is at the end of the drain lead. the parameters include the effect of four pla ted through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side o f the carrier. two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each si de of that point.
11 noise parameter applications information f min values at 2 ghz and higher are based on measurements while the f mins below 2 ghz have been extrapolated. the f min values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements, a true f min is calculated. f min represents the true minimum noise figure of the device when the device is pre- sented with an impedance matching network that trans- forms the source impedance, typically 50 ? , to an impedance represented by the reflection coefficient o . the designer must design a matching network that will present o to the device with minimal associated circuit losses. the noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. the noise figure of the device is equal to f min only when the device is presented with o . if the reflec- tion coefficient of the matching network is other than o , then the noise figure of the device will be greater than f min based on the following equation. nf = f min + 4 r n | s C o | 2 zo (|1 + o | 2 )(1 C s | 2 ) where r n /z o is the normalized noise resistance, o is the opti- mum reflection coefficient required to produce f min and s is the reflection coefficient of the source impedance actually presented to the device. the losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. the losses of the matching networks are related to the q of the components and associated printed circuit board loss. o is typically fairly low at higher frequencies and increases as frequency is lowered. larger gate width devices will typically have a lower o as compared to narrower gate width devices. typically for fets, the higher o usually infers that an impedance much higher than 50 ? is required for the device to produce f min . at vhf frequencies and even lower l band frequencies, the required impedance can be in the vicinity of several thousand ohms. matching to such a high imped- ance requires very hi-q compo- nents in order to minimize circuit losses. as an example at 900 mhz, when airwwound coils (q > 100) are used for matching networks, the loss can still be up to 0.25 db which will add directly to the noise figure of the device. using muiltilayer molded inductors with qs in the 30 to 50 range results in additional loss over the airwound coil. losses as high as 0.5 db or greater add to the typical 0.15 db f min of the device creating an amplifier noise figure of nearly 0.65 db. a discussion concerning calculated and measured circuit losses and their effect on ampli- fier noise figure is covered in agilent application 1085.
12 l=lc l=lb r=rb l=lb r=rb l c c=ca c c=cb lossyl l=lb r=rb l=la * .5 l=ld l l lossyl gate_in source drain_out r equation la=0.1 nh equation lb=0.1 nh equation lc=0.8 nh equation ld=0.6 nh equation rb=0.1 oh equation ca=0.15 pf equation cb=0.15 pf r=0.1 oh lossyl l=la l=lb r=rb l lossyl l=lb r=rb lossyl g s d source ATF-34143 sc-70 4 lead, high frequency nonlinear model optimized for 0.1 C 6.0 ghz this model can be used as a design tool. it has been tested on mds for various specifications. however, for more precise and accurate design, please refer to the measured data in this data sheet. for future improvements agilent reserves the right to change these models without prior notice. nfetmesfet g model=fet w=800 m xx d xx s s xx nfet=yes pfet= idsmod=3 vto=?.95 beta= beta lambda=0.09 alpha=4.0 b=0.8 tnom=27 idstc= vbi=.7 ids model delta=.2 gscap=3 cgs=cgs pf gdcap=3 gcd=cgd pf gate model rg=1 rd=rd rs=rs lg=lg nh ld=ld nh ls=ls nh cds=cds pf crf=.1 rc=rc parasitics gsfwd=1 gsrev=0 gdfwd=1 gdrev=0 vjr=1 is=1 na ir=1 na imax=.1 xti= n= eg= breakdown fnc=01e+6 r=.17 p=.65 c=.2 noise model scal factors (w=fet width in microns) equation cds=0.01 * w/200 equation beta=0.06 * w/200 equation rd=200/w equation rs=.5 * 200/w equation cgs=0.2 * w/200 equation cgd=0.04 * w/200 equation lg=0.03 * 200/w equation ld=0.03 * 200/w equation ls=0.01 * 200/w equation rc=500 * 200/w * statz mesfet model * model = fet ATF-34143 die model
13 package dimensions sc-70 4l/sot-343 he d a2 a1 b b1 e 1.30 (.051) bsc 1.15 (.045) bsc c l a dimensions (mm) min. 1.15 1.85 1.80 0.80 0.80 0.00 0.25 0.55 0.10 0.10 max. 1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46 symbol e d he a a2 a1 b b1 c l notes: 1. all dimensions are in mm. 2. dimensions are inclusive of plating. 3. dimensions are exclusive of mold flash & metal burr. 4. all specifications comply to eiaj sc70. 5. die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. package surface to be mirror finish. part number ordering information no. of part number devices container ATF-34143-tr1 3000 7" reel ATF-34143-tr2 10000 13" reel ATF-34143-blk 100 antistatic bag ATF-34143-tr1g 3000 7" reel ATF-34143-tr2g 10000 13" reel ATF-34143-blkg 100 antistatic bag note: for lead-free option, the part number will have the character g at the end.
14 device orientation end view 8 mm 4 mm top view 4px 4px 4px 4px 1.30 0.051 0.60 0.024 .090 0.035 dimensions in inches mm 1.15 0.045 2.00 0.079 1.00 0.039 recommended pcb pad layout for agilents sc70 4l/sot-343 products user feed direction cover tape carrier tape reel
www.agilent.com/semiconductors for product information and a complete list of distributors, please go to our web site. for technical assistance call: americas/canada: +1 (800) 235-0312 or (916) 788-6763 europe: +49 (0) 6441 92460 china: 10800 650 0017 hong kong: (65) 6756 2394 india, australia, new zealand: (65) 6755 1939 japan: (+81 3) 3335-8152(domestic/international), or 0120-61-1280(domestic only) korea: (65) 6755 1989 singapore, malaysia, vietnam, thailand, philippines, indonesia: (65) 6755 2044 taiwan: (65) 6755 1843 data subject to change. copyright ? 2004 agilent technologies, inc. obsoletes 5988-4210en november 22, 2004 5989-1916en tape dimensions and product orientation for outline 4t p p 0 p 2 f w c d 1 d e a 0 10 max. t 1 (carrier tape thickness) t t (cover tape thickness) 10 max. b 0 k 0 description symbol size (mm) size (inches) length width depth pitch bottom hole diameter a 0 b 0 k 0 p d 1 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 cavity diameter pitch position d p 0 e 1.55 0.10 4.00 0.10 1.75 0.10 0.061 + 0.002 0.157 0.004 0.069 0.004 perforation width thickness w t 1 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 0.0100 0.0008 carrier tape cavity to perforation (width direction) cavity to perforation (length direction) f p 2 3.50 0.05 2.00 0.05 0.138 0.002 0.079 0.002 distance width tape thickness c t t 5.40 0.10 0.062 0.001 0.205 + 0.004 0.0025 0.0004 cover tape


▲Up To Search▲   

 
Price & Availability of ATF-34143

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X